THE STRUCTURE OF LUBIMIN AND OXYLUBIMIN, ANTIFUNGAL METABOLITES FROM DISEASED POTATO TUBERS¹⁾

N. Katsui, Akira Matsunaga, and T. Masamune*

Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Japan (Received in Japan 3 October 1974; received in UK for publication 11 November 1974)

In a continuing study²⁾ on phytoalexins produced by tuber tissues of white potatoes (<u>Solanum tuberlosum</u> and <u>S. demissum</u>) infected by an incompatible race of <u>Phytophthora infestans</u>, we isolated two antifungal sesquiterpenes, one being identified as lubimin (I), obtained recently from the same sources by Metlitskii <u>et al.</u>,^{3a)} and the other being regarded as oxylubimin (II), in $2x10^{-5}$ and $5x10^{-5}$ % yields, respectively, along with rishitin^{2a)} ($1.5x10^{-4}$ %).⁴) We present here evidence that lubimin is represented more favorably by formula I, rather than a proposed formula (III),^{3b)} and oxylubimin by formula II.

Lubimin (I), colorless oil, $[\alpha]_D + 36^\circ$,⁵⁾ $C_{15}H_{24}O_2$,⁵⁾ gave monoacetate (Ia), oil, $[\alpha]_D + 35^\circ$. These compounds exhibited the following spectra:⁵⁾ (I); Mass, m/e 236 (M⁺); IR (film), v_{max} 3410, 3085, 2740, 1715, 1640, and 890 cm⁻¹; NMR,⁴⁾ δ 0.94 (3H, d J = 7), 1.68 (3H, s), 3.65 (1H, m W_H = 25), 4.65 (2H, s), and 9.74 (1H, d J = 3): (Ia); Mass, m/e 278 (M⁺); IR (film), v_{max} 2715, 1735, 1720, 1640, 1238, and 888 cm⁻¹; NMR, δ 1.96 (3H, s) and 4.60 (1H, m W_H = 25). These spectra indicate that Metlitskii's^{3a)} and our lubimin is identical and contains CH₃CH-, CH₂=C(CH₃)-, HoCH-, and CHO- groupings in the molecule.^{3b)}

4483

Reduction of I with NaBH, produced unsaturated glycol (IV), mp 128-130°, $\left[\alpha\right]_{n}$ +28°; Mass, m/e 238 (M⁺), which on hydrogenation over Pt afforded saturated glycol (V), mp 145-147°, $[\alpha]_{D}$ +35°; Mass, m/e 240 (M⁺); IR, v_{max} 1387 and 1372 cm^{-1} ; NMR, δ 0.86 (9H, d J = 7, 3CH₃CH-), 3.30 and 3.89 (each 1H, do d J = 11, 8 and 11, 3, $HOCH_2CH^{\dagger}$, and 3.63 (1H, m $W_{H} = 25$, $HOCH^{-}$). Glycol V was converted into monobenzoate (Va), mp 105-108°; IR, v_{max} 3400, 1718, 1594, and 847 cm⁻¹; NMR, δ 3.64 (1H, m W_H = 25, HOCH-), 3.99 and 4.64 (each 1H, do d J = 11, 10 and 11, 2, $BrC_{6}H_{4}COOCH_{2}CH_{-}$, which on oxidation with CrO_{3} afforded keto-ester (VI) in 50% yield, mp 70-73°; Mass; m/e 220 (M⁺ -199) and 177 (220-43); IR, v_{max} 1720, 1705 (sh), 1598, and 842 cm⁻¹. Treatment of VI with NaOD in a refluxing mixture of $D_{2}O$ and dioxane led to deuteration of two CH₂ groups adjacent to the CO group with concomitant hydrolysis, giving the d_5 -derivative (VII), $C_{15}H_{21}D_5O_2$; Mass, m/e 243 (M⁺); IR (film), $v_{max} \frac{1705}{2}$ cm⁻¹. Compound V, when treated with p-BrC_cH_ASO₂Cl (2 moles), produced monobrosylate (Vb), oil, in 50% yield; IR (film), 3400, 1580, 1372, and 1183 cm⁻¹; NMR (CCl₄), δ 3.64 (lH, m W_H = 25, $HOCH_{-}$, 3.70 and 4.15 (each 1H, do d J = 11, 8 and 11, 4, $BrC_{6}H_{4}SO_{2}OCH_{2}CH_{-}$), which was converted spontaneously into cyclic ether (VIII), oil, C₁₅H₂₆0; Mass, m/e 222 (M⁺); IR (film), $v_{max} \frac{1105}{100}$ and $\frac{912}{2}$ cm⁻¹;⁶) NMR (CCl₄), δ 0.87 and 0.89 [total 6H, each d J = 7, $(CH_3)_2CH_1$, <u>1.10</u> (3H, d J = 7.5, CH_3CH_1 , 3.49 and 3.78 (each 1H, do d J = 10, 4.5 and d J = 10, -CHOCH₂CH-), and 4.19 (1H, m $W_{H} = 10$, -CHOCH_CH-). These facts strongly suggested the presence of a moiety -CH₂CH(OH)CH₂CH(CHO)- in a 6- or 7-membered ring of lubimin (I). The whole structure was deduced from spin-decoupling studies on the NMR spectrum of I in the presence of shift reagent $Eu(fod)_3^{(7)}$ (Table 1 and Fig. 1).

 $R=p-BrC_6H_4CO, R'=H$ Va R=p-BrC₆H₄SO₂, R'=H

Vb

VII R=D and

D₂at C₁ and C₃

VIII

Table	el The NM	R spec	trum of	lubimin	(I) in •	the pre	esence of the euro	pium
	shift re	eagent	Eu(fod)	3 (CC14,	100 MH	z) and	spin-decoupling r	esults
Run	Mole ratio			Proton	(δ)		Multiplici-	Splitting
	I:Eu(fod)3 Irradiat		rradiate	ed	Obse	rved	ty change decoupled (Hz)	
1	2:1	H-A	(C-15)	11.13	4.24	(H-B)	brtt	2.5
2a	2:1	H-B	(C-10)	4.24	11.13	(H-A)	d s	2.5
ь					7.30	(H-C)	ch (br t br	s)
3a	2:1	H-C	(C-1)	7.30	4.24	(H-B)	brtbrs	8 and 8
b					10.36	(H-D)	m (W _H 25) m	(W _H 20)
4a	2:1	H-D	(C-2)	10.36	7.30	(H-C)	ch (br t br	d)
b					6.05	(H-E)	ch (br t br	d)
5a	2:1	H-E	(C-3)	6.05	10.36	(H-D)	m (W _H 25) m	(W _H 20)
b					~3.4	(H-F)	ch ?	
6a	2:1	H-F	(C-4)	3.38	6.05	(H-E)	ch (br t br	s)
b					1.90	(H-G)	d s	7
7	2:1	H-G	(C-14)	1.90	3.4	(H-F)	ch ?	
8a	2:1	H-H	(C-6)	3.82	~3.2	(H-I)	ch	
b					~2.3	(H-J)	ch	
9a	2:1	H-I	(C-6)	3.20	3.82	(H-H)	do d d	13
b					~2.3	(H-I)	ch	
10a	2:1	H-J	(C-7)	2.30	3.82	(H-H)	do d d	7
					~3.2	(H-I)	ch	
11	1:1	H-F	(C-4)	4.54	2.50	(H-G)	d s	7
12	1.1	u _C	(C-1A)	2 50		/		

The decoupling studies, especially runs 3a, 12, 9a and 10a, indicated the presence of two partial structures; $=(quarternary carbon)-CH(CHO)-CH_2-CH(OH)-CH_2-CH(CH_3)-X$ (X, not CH_2 but probably =), and $=-CH_2CH[C(CH_3)=CH_2]-(CH_2)_n-(n, probably 2)$. In view of the presence of a quarternary carbon, supported by appearance of a singlet signal at δ 47.6 ppm in an off-resonance decoupled CMR spectrum of diacetate of IV in CDCl₃, combination of these structures has elucidated the whole structure (I) with an agarospirane (vetispirane) skeleton.⁸)

Oxylubimin (II), mp 85-86° (isopropyl ether), $[\alpha]_D + 27°$, $C_{15}H_{24}O_3$, showed the following spectra; Mass, m/e 252 (M⁺); IR, v_{max} 3380, 3080, 2750, 1717, 1650, and 885 cm⁻¹; NMR, δ 1.06 (3H, d J = 7), 1.67 (3H, s), 2.87 (2H, br s, 20<u>H</u>), 2.98 (1H, t J = 10), 3.42 (1H, m W_H = 20), and 9.78 (1H, d J = 3), and was assigned formula II in essentially the same manner as lubimin.

REFERENCES AND FOOTNOTES

- 1 Part XI of "Studies on the Phytoalexins;" Part X, N. Ishizaka and K. Tomiyama, Plant & Cell Physiolohy, 13, 1053 (1972).
- 2 a) K. Tomiyama, T. Sakuma, N. Ishizaka, N. Sato, N. Katsui, M. Takasugi, and T. Masamune, <u>Phytopathology</u>, <u>58</u>, 115 (1968); N. Katsui, A. Murai, M. Takasugi, K. Imaizumi, T. Masamune, and K. Tomiyama, <u>Chem. Comm.</u>, 43 (1968). b) N. Katsui, A. Matsunaga, K. Imaizumi, T. Masamune, and K. Tomiyama, <u>Bull</u>. <u>Chem</u>. <u>Soc. Japan</u>, <u>45</u>, 2871 (1972).
- 3 L. V. Metlitskii, Yu. T. Dyakov, O. L. Ozeretskovskaya, L. A. Yurganova,
 L. I. Chalova, and N. I. Vasyukova, <u>Izv. Akad. Nauk</u> <u>SSSR</u>, Ser. Biol., 339 (1971).
 b) L. V. Metlitskii, O. L. Ozeretskovskaya, N. S. Vul'fson, and
 L. I. Chalova, Mikol. Fitopatol., <u>5</u>, 439 (1971).
- 4 We are grateful to Mr. N. Sato for the preparation of raw materials and to Mrs. T. Okayama for the measurement of NMR spectra.
- 5 Optical rotations, IR and NMR spectra were measured in EtOH, CHCl₃and CDCl₃, unless otherwise stated. Abbreviations "s, d, t, m, br, do, ch, and sh" in the spectral data denote singlet, doublet, triplet, multiplet, broad, double, change, and shoulder, respectively. Coupling constants J (Hz) were estimated by first-order approximations. All new compounds gave elementary analyses in good accord with the assigned structures.
- 6 G. M. Barrow and S. Searless, J. Amer. Chem. Soc., 75, 1175 (1953).
- 7 R. E. Rondeau and R. E. Sievers, *ibid.*, *93*, 1522 (1972).
- 8 D. T. Coxon, K. R. Price, B. Howard, S. F. Osman, E. B. Kalan, and R. M. Zacharius, Tetrahedron Lett., 2921 (1974).